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Computational Modeling of FRP Reinforced
Cementitious Beams

Sonia Marfia-Elio Sacco
Dipartimento di Meccanica, Strutture, A. T., Università di Cassino, Cassino, Italy

In the present paper, a one-dimensional elastoplastic-damage
model for the analysis of the mechanical response of beams consti-
tuted by cementitious materials, i.e., concrete or masonry, strength-
ened by fiber reinforced polymers (FRP), is developed. The analysis
is performed for a typical section, representing an elementary part
of beam characterized by the finite length, defined as the distance
between two fractures. A thermodynamically consistent model is
proposed; it takes into account the different behavior in tension
and in compression of the cohesive materials.

The governing equations are derived and a numerical procedure
is developed. It is based on the arc-length method, within an implicit
Euler algorithm for the time integration. An accurate choice of the
control parameters is performed. The finite step nonlinear problem
is solved adopting a Newton-Raphson scheme within a predictor-
corrector procedure.

Some numerical examples are developed in order to analyze
the non trivial axial and bending behavior of reinforced concrete
and masonry beams and to assess the efficiency of the proposed
procedure. Comparisons with analytical solutions are reported.

1. INTRODUCTION
In the last decade, great interest has been devoted by the

technological and the scientific community to the possibility of
using advanced composites materials, such as fiber reinforced
polymers (FRP), to repair and reinforce concrete and masonry
elements [1–4].

In fact, these materials present a combination of excellent
properties, such as low weight, immunity to corrosion, possi-
bility of formation in very long lengths and high mechanical
strength and stiffness. They can be successfully applied to the
tensile zones of structural members by using epoxy adhesives.
Moreover, FRP materials are very simple to install (resulting in
low labor costs) and they are also removable, which is a very
interesting property mainly for monumental structures.

For all these reasons, the use of FRP for strengthening civil
structures is becoming very popular and several experimental
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and theoretical investigations have been developed to evaluate
the effectiveness of the application of FRP and to define rules
for the design of the reinforcement.

Several studies related to the behavior of concrete beams, re-
inforced by FRP sheets, have been developed. Among the others,
Rabinovitch and Frostig [5] developed a nonlinear analysis of the
response of cracked reinforced concrete beams, retrofitted by ex-
ternally bonded FRP strips. Nonlinear constitutive relations for
the various materials, equilibrium and deformation compatibil-
ity are taken into account in the model. The nonlinear implicit
equations governing the problem are solved through an iter-
ative procedure. Alagusundaramoorthy et al. [6] and Deniaud
and Chen [7] derived the shear and bending response of FRP-
reinforced elements. Rabinovitch [8] proposed an analytical
investigation of the bending behavior of reinforced concrete
beams strengthened by composite materials externally bonded
using nonlinear and inelastic adhesives. The model is derived
through the virtual work taking into account the compatibil-
ity conditions and the constitutive laws. The numerical results
show that the use of inelastic and nonlinear adhesives improves
the overall load carrying behavior of strengthened beams in-
creasing ductility and reducing the shear stress near the ends
of the bonded strips. Shao et al. [9] presented a nonlinear in-
elastic analysis for large displacement of the cyclic response
of concrete columns reinforced with FRP, developing a three
node composite beam-column finite element. The constitutive
models for cyclic loading of FRP and concrete are taken into
account.

FRP materials are even adopted to reinforce masonry struc-
tures, such as walls, arches and vaults. Several studies have been
devoted to the analysis of masonry panels. Experimental inves-
tigations were developed by Schwegler [10], Ehsani [11] and
Laursen et al. [12] in order to evaluate the mechanical response of
reinforced masonry walls subjected to seismic action. Tumialan
et al. [13] emphasized the positive aesthetics and social impact
related to the use of FRP to strengthen masonry walls against
in-plane and out-of-plane collapse.

An analysis of masonry arch reinforced by FRP sheets was
proposed by Luciano et al. [14], developing an experimental,
as well as a finite element study. Foraboschi [15] presented a
mathematical model able to predict the ultimate load associated
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with the possible failure modes of reinforced arches. Marfia and
Sacco [16] developed a finite element model based on no-tension
material with limited strength in compression to study the struc-
tural collapse of masonry elements reinforced by FRP materials.
It is noted that the failure of reinforced structures is often due
to the limited strength in compression of the masonry, so that
the inelastic behavior of the masonry in compression should be
taken into account for a correct design of the reinforcement and,
mainly, for an accurate determination of the failure load.

Micromechanical models able to derive the response of rein-
forced masonry have been developed, considering the masonry
as a composite material with the blocks as inclusions in a matrix
of mortar [17–19].

It can be stated that the knowledge on the use of FRP in
civil constructions and on the design for the reinforcement of
existing structures can be considered quite advanced, so that
some guidelines are today available with the aim to help the
engineers properly design strengthening interventions. The last
and maybe more complete guideline, including also the case of
masonry structures, has been developed in Italy [20].

It is fair to notice that the studies regarding the application
of FRP materials are mainly developed for retrofitting, strength-
ening and wrapping existing concrete and masonry structural
members in order to increase the bending capacity and shear-
ing resistance. In fact, the application of FRP in these structural
members leads to a significant increase of the structural stiff-
ness and strength; but it can also induce a very tough and brit-
tle mechanical response of reinforced element, because of the
brittle or quasi-brittle behavior of the cementitious and FRP
materials [21]. Moreover, it has been demonstrated that the
tension—stiffening effect for cementitious elements strength-
ened by FRP—plate/sheets is very pronounced. In fact, it has
been shown that the presence of a quite low amount of external
reinforcement is able to provide a significant reduction of axial
deformability in cracked elements within a strong reduction of
width of transverse cracks and of the distance between cracks
[22].

Because of the reduced crack distance and crack opening,
continuous damage models can be successfully adopted for the
analysis of cementitiuos, concrete or masonry, beams. In fact,
the so-called fiber models [9, 23, 24], based on damage me-
chanics and plasticity, can be used to investigate the mechanical
behavior of cementitious beams reinforced by FRP materials. In
particular, the concrete, as well as the masonry can be modeled
considering a brittle behavior in traction and inelastic deforma-
tions accompanied by damage effects in compression [25].

The aim of this paper is the definition of a simple and effective
structural model to investigate on the behavior of cementitious
(concrete or masonry) beams, reinforced by advanced composite
laminates glued on the top and bottom of the beam. In particu-
lar, the specific objective of the work is the determination and
investigation of the possible very complex equilibrium paths re-
sulting from the softening response of the concrete or masonry
material.

To this end, a one-dimensional thermodynamically consis-
tent model for cementitious materials, which takes into account
the damage and the plasticity effects is proposed. It is assumed
that the plasticity can be activated only when the material is
subjected to a compressive stress; on the contrary, the material
behavior in tension is governed only by damage. The constitutive
equations as well as the damage and plasticity evolutive equa-
tions are written in explicit form. The damage and plastic evolu-
tions result coupled since the damage is governed by the elastic
strain.

Because of the damage in tension and the damage and plas-
ticity in compression, highly nonlinear equilibrium equations
are deduced. In order to solve the nonlinear problem, a nu-
merical procedure is developed. It is based on the arc-length
method, with a proper choice of the control parameters. The
evolutionary equations of the damage and plasticity are inte-
grated with respect to the time, developing an implicit Euler al-
gorithm. The finite step nonlinear solution is obtained perform-
ing a predictor-corrector procedure. In particular, the coupled
damage and plasticity evolutive equations are solved adopting a
Newton-Raphson algorithm. Then, the numerical procedure is
implemented in a computer code.

Some applications are presented. The axial and the bending
response of the reinforced concrete and masonry beam are in-
vestigated. Moreover, several loading histories are considered.
Some comparisons between analytical and numerical solutions
are developed in order to assess the efficiency of the procedure.

The paper is organized as follows. Initially the proposed
elastoplastic-damage model is described. Then, the cross-
section beam equations are deduced. The numerical procedure
and the arc-length technique are presented in detail. Finally,
some numerical applications on reinforced concrete and ma-
sonry elements are reported.

2. CONSTITUTIVE MODEL
A thermodynamically consistent one-dimensional constitu-

tive relation is addressed. The free energy is assumed to be:

ψ = η

[
1

2
(1 − D+)E(ε − εp)2 + g+(ξ+)

]

+ (1 − η)

[
1

2
(1 − D−)E(ε − εp)2 + g−(ξ−) + k(β)

]
(1)

where E is the Young modulus of the material, D+ and D− are
the damage parameters in tension and in compression, respec-
tively, satisfying the classical inequalities 0 ≤ D± ≤ 1, with
D± = 0 for the virgin material and D± = 1 for the completely
damaged material; ε is the total strain, εp is the plastic strain,
so that ε − εp = εe represents the elastic strain; ξ+ and ξ−

are the internal parameters governing the damage softening in
tension and in compression, respectively, β is the internal pa-
rameter governing the plasticity hardening and η is the stepwise
function of the elastic strain εe, such that η = 1 if εe ≥ 0 and
η = 0 if εe < 0. Note that in the following, the superscript +
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corresponds to the case η = 1, i.e. εe ≥ 0, and the superscript −

corresponds to the case η = 0, i.e., εe < 0.
It is assumed that D+ ≥ D− that means that, on the base of

experimental results, the damage in tension does not lead dam-
age in compression, while the damage in compression induces
a degradation of the material properties also in tension.

The functions g±(ξ±) and k(β) are set as:

g±(ξ±) = 1

2
E

(ε±
c )2

(1 + α±ξ± − ξ±)(α± − 1)
(2)

k(β) = 1

2
Kβ2 (3)

where ε±
c represents the starting damage threshold strain, α± =

ε±
c /ε±

u is the threshold ratio, with ε±
u the final damage threshold

strain, and K is the plastic hardening parameter. The thresh-
old strains ε±

c and ε±
u and the plastic hardening quantity K are

material parameters.
The state laws are obtained deriving the free energy respect

to the internal variables:

σ = ∂ψ

∂ε
= η[(1 − D+)E(ε − εp)] + (1 − η)

× [(1 − D−)E(ε − εp)]

Y ± = − ∂ψ

∂D± = 1

2
E(ε − εp)2 = 1

2
Eε2

e = Y

ζ± = − ∂ψ

∂ξ± = 1

2
E

(ε±
c )2

(1 + α±ξ± − ξ±)
2

(4)

τ = − ∂ψ

∂εp
= σ

ϑ = −∂ψ

∂β
= −(1 − η)Kβ

where σ is the stress, Y is the damage energy release rate, ζ±

is the thermodynamical force associated to ξ±, τ is the thermo-
dynamical force associated to the plastic strain and, indeed, it
results τ = σ, finally ϑ is the hardening plastic force.

The evolutionary equations of the internal damage and plas-
tic state variables D±, ξ±, εp, β are evaluated introducing two
damage yield functions f + and f − and a plastic yield func-
tion f p. In particular, the damage evolution is governed by the
following equations:

f ±(Y, ζ±) = Y − ζ± ≤ 0 γ̇ ± ≥ 0 f ±γ̇± = 0

Ḋ± = ∂ f ±

∂Y
γ̇± = γ̇±

(5)

ξ̇
± = −∂ f ±

∂ζ± γ̇± = γ̇±

with γ̇± the loading/unloading damage multiplier. From Eq. (5),
it results that the parameter ξ± coincides with the damage inter-
nal state variable D±, in fact Ḋ± = ξ̇

± = γ̇±.

Taking into account the state law Eq. (4), the limit condition
(5)1 can be rewritten as:

0 = Y − ζ± = 1

2
Eε2

e − 1

2
E

ε±
c

(1 + α± D± − D±)2
(6)

which, considering a monotonic damage evolution, leads to:

εe = ε±
c

1 + α± D± − D± (7)

i.e.,

D± = ε±
c − εe

(α± − 1)εe
= εu

ε±
c − εe

(ε±
c − ε±

u )εe
(8)

Thus, it results D± = 0 for εe = ε±
c and D± = 1 for εe = ε±

u ;
moreover, substituting the deduced relation (8) into the expres-
sion of the stress given by the first equation of the state laws
(4)1, a stress-strain linear softening is obtained when no plastic
evolution is considered.

The evolution of the damage parameter Ḋ± = ξ̇
± = γ̇± is

computed from the consistency equations. In fact, it is:

0 = ḟ ±(Y, ζ±) = Eεeε̇e + E
(ε±

c )2(α± − 1)

(1 + α±ξ± − ξ±)
3 ξ̇

±

with f ± = 0 and ζ̇
±

> 0 (9)

Equation (9) is rewritten considering the definitions of the ther-
modynamical force ζ± and of the damage energy release rate Y ;
recalling that ξ± = D±, it results:

0 = ε̇e + (α± − 1)εe

(1 + α± D± − D±)
Ḋ± with f ± = 0

and Ḋ± > 0 (10)

Substituting the damage parameter given from formula (8) into
Eq. (10), the damage rate can be written as function of the elastic
strain rate:

Ḋ± = ε±
c

(1 − α±)ε2
e

ε̇e with f ± = 0 and Ḋ± > 0 (11)

The plasticity evolution is modeled introducing the following
loading/unloading conditions:

f p(σ, ϑ) = − σ

1 − D− + ϑ − σy ≤ 0 µ̇ ≥ 0 f pµ̇ = 0 (12)

with µ̇ the plastic multiplier and σy > 0 the limit plastic stress
in compression. It is fair to note that the plastic yield function
can be active only in compression. The evolutions of the plastic
strain and of the hardening variable are governed by associated
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laws:

ε̇p = ∂ f p

∂σ
µ̇ = − µ̇

1 − D− β̇ = ∂ f p

∂ϑ
µ̇ = µ̇ (13)

From Eq. (13) it results:

β̇ = −(1 − D−)ε̇p (14)

In Eq. (12) the quantity σ/(1 − D) = σ̃ is the effective stress in
compression.

The consistency condition for the plastic process leads to:

0 = ḟ p(σ, ϑ) = ∂ f p

∂σ
σ̇ + ∂ f p

∂ϑ
ϑ̇ = E(ε̇ − ε̇p)

+ K (1 − D−)ε̇p (15)

The evolution of the plastic strain ε̇p and, consequently of the
hardening parameter β̇, is obtained from Eq. (15):

ε̇p = H ε̇ β̇ = −(1 − D−)H ε̇ (16)

where

H = E

E + K (1 − D−)
(17)

Once the plastic strain evolution is determined in terms of the
total strain rate, also the damage rate can be expressed in terms
of the total strain rate as:

Ḋ± = ε±
c

(1 − α±)ε2
e

(ε̇ − ε̇p)

= ε±
c

(1 − α±)ε2
e

(1 − (1 − η)H )ε̇ (18)

The tangent constitutive modulus E±
T is obtained by differenti-

ating the stress-strain relationship:

E±
T = E

[
(1 − D±) − ε±

c

(1 − α±)εe

]
(1 − (1 − η)H ) (19)

Once the state laws and the damage and plastic evolution equa-
tions of the model have been defined, considering isothermal
processes, the mechanical dissipation can be written in terms of
the free energy as:

D = −ψ̇ + σε̇ = Y (Ḋ+ + Ḋ−) + ζ+ξ̇
+

+ ζ−ξ̇
− + σε̇p + ϑβ̇ (20)

It can be proved that, because of the definitions (4) and the
formulas (5) and (13), the mechanical dissipation results always
not negative, i.e., D ≥ 0, so that the Clausius-Duhem inequality
is satisfied.

3. CROSS-SECTION BEAM EQUATIONS
The one-dimensional elastoplastic-damage constitutive law,

developed in the previous section, is adopted to study the be-
havior of softening beams made of concrete or masonry. In par-
ticular, beam cross-sections, presenting a symmetry axis y, are
considered. Note that the study can be extended to other geome-
tries of the cross-section.

The possibility to account for the presence of elastic re-
inforcements is considered. Reinforcements are external, as
the ones adopted to rehabilitate damaged concrete or masonry
beams by using fiber-reinforced plastic materials.

The response of the damage-plastic cross-section beam is
derived considering the elongation e and the bending curvature
χ deformations, such that the strain at a typical point of the beam
is:

ε = e + yχ (21)

The resultants in the softening beam are:

N B(e, χ) =
∫

A
σ(e, χ)d A M B(e, χ) =

∫
A

yσ(e, χ)d A (22)

where A is the cross-section area of the beam. Moreover, the
resultants in the elastic reinforcements are:

N R = ARe + B Rχ M R = B Re + DRχ (23)

where

AR =
nR∑

i=1

E R
i Si B R =

nR∑
i=1

E R
i Si hi DR =

nR∑
i=1

E R
i Si h

2
i

(24)
with nR the number of reinforcements, E R

i , Si and hi the Young
modulus, the area and the abscissa of the i−th reinforcement,
respectively.

The total resultant axial force and the bending moment in the
reinforced beam are:

N = N B + N R M = M B + M R (25)

Finally, the behavior of the cross-section softening beam is gov-
erned by the equation:

RN (e, χ, λ) = N (e, χ) − λNext

= N B(e, χ) + N R(e, χ) − λNext = 0

RM (e, χ, λ) = M(e, χ) − λMext

= M B(e, χ) + M R(e, χ) − λMext = 0 (26)

where λ is the loading multiplier, introduced with the aim of de-
veloping an arc-length procedure. Equation (26) can be rewritten
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in vectorial form as:

R(u, λ) = S(u) − λω = 0 (27)

where u is the beam elongation and curvature vector, S(u) is the
internal stress resultant vector and ω is the external load vector;
in particular, it is set:

u =
[

e

χ

]
S(u) =

[
N (e, χ)

M(e, χ)

]
ω =

[
Next

Mext

]
(28)

4. COMPUTATIONAL PROCEDURE
The nonlinear equilibrium Eq. (27) is solved developing a

numerical procedure. In particular, to evaluate the kinematic
vector u and the loading multiplier λ, it is required:

• the time discretization of the equilibrium Eq. (27),
• the definition of the arc-length constrain equation and

the setting of the control parameters,
• the time integration of the constitutive equations.

4.1. Equilibrium Equations
The following notation is adopted: the subscript n indicates a

quantity evaluated at time tn while no subscript indicates a quan-
tity evaluated at time tn+1. Moreover, � indicates the variable
increment at the time step �t . It is assumed that the solution un ,
i.e. the beam elongation and curvature vector at the time tn corre-
sponding to the load parameter λn , is known. A new equilibrium
configuration at a subsequent time tn+1, is given by:

u = un + �u λ = λn + �λ (29)

such that Eq. (27) can be written as:

R(u, λ) = S(un + �u) − (λn + �λ)ω = 0 (30)

The Newton-Raphson algorithm is adopted to solve the finite
step equilibrium problem (30), which is written in a linearized
form:

R(uk+1, λk+1) = R(uk, λk) + Ktδu − ωδλ = 0 (31)

where δu = uk+1 − uk , δλ = λk+1 − λk , the superscripts k and
k+1 indicate the iteration indices and Kt is the tangent matrix,
defined as:

Kt = ∂R
∂u

∣∣∣∣
u = uk

=




∂RN

∂e

∂RN

∂χ

∂RM

∂e

∂RM

∂χ


 =

[
AB + AR B B + B R

B B + B R DB + DR

]

(32)

with

AB =
∫

A

∂σ

∂e
dA B B =

∫
A

∂σ

∂χ
dA =

∫
A

y
∂σ

∂e
dA

DB =
∫

A
y
∂σ

∂χ
dA (33)

The tangent moduli ∂σ/∂e and ∂σ/∂χ are computed as:

∂σ

∂e
= E±

T

∂σ

∂χ
= yE±

T (34)

Substituting the tangent moduli into Eq. (33), the explicit form
for the quantities AB, B B and DB is obtained:

AB =
∫

A
E±

T dA B B =
∫

A
yE±

T dA DB =
∫

A
y2 E±

T dA

(35)

Once AB, B B and DB are determined, the tangent matrix Kt ,
defined by formula (32), can be explicitly evaluated.

Note that, the integration over the cross-section to determine
the residuals R and the quantities AB, B B and DB can be per-
formed by discretizing the cross-section in stripes and applying
the Gauss integration formula within each stripe, which can be
considered as an extension of the classical fiber model. The time
integration of the local constitutive equations is required to de-
fine the damage and plastic evolutions in each Gauss point. This
aspect is described in detail in Section 4.3.

4.2. Arc-length Procedure
The softening behavior of the material constituting the beam

can induce an overall response characterized by steep softening
and snap-back branches. Hence, it appears convenient to adopt
an arc-length method able to catch the overall beam response.
In particular, the cylindrical as well as the linearized arc-length
methods [26] with local control are developed for the particular
problem under consideration.

Special attention is addressed to the choice of the control
parameters which represents a key point of the arc-length method
[27]. The two strains ε̂+ and ε̂−, evaluated at y = y+

u and y =
y−

u , are assumed as control parameters. The coordinates y+
u and

y−
u define the position of the axes in the cross-section where the

elastic strains computed at the time tn are equal to the tensile and
compressive final damage threshold strains, i.e., εe,n(y+

u ) = ε+
u

and εe,n(y−
u ) = ε−

u . They are determined as:

y+
u : en + y+

u χn − εp,n(y+
u ) = ε+

u

⇒ y+
u = ε+

u − en + εp,n(y+
u )

χn

y−
u : en + y−

u χn − εp,n(y−
u ) = ε−

u

⇒ y−
u = ε−

u − en + εp,n(y−
u )

χn
(36)
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It can be noted that, applying formula (36), the coordinates y+
u

and y−
u could be not internal to the cross-section, for any possible

loading conditions. In that cases, it is assumed y+
u = ±h/2 and

y−
u = ∓h/2, where h is the height of the cross-section along

the y axis and the sign + or − is selected in dependence on
the sign of the bending moment. Finally, as announced above,
the arc-length procedure is controlled by the increment of the
strains ε̂+ = ε(y+

u ) and ε̂− = ε(y−
u ).

According to the cylindrical version of the arc-length method,
the constraint equation in the finite step is:

�2 = [�ε̂+(δu, δλ)]2 (37)

where � is the prescribed incremental solution length.
The solution of Eqs. (31) and (37) allows to compute the

iterative kinematic increment δu and the multiplier load incre-
ment δλ. In particular, solving Eq. (31) with respect to δu and
substituting the deduced expression into Eq. (37), the classical
algebraic quadratic equation of the cylindrical arc-length method
is obtained. The iterative load factor is chosen as the solution of
the quadratic equation that yields the minimum angle between
uk and uk+1.

4.3. Time Integration of the Constitutive Equations
The time integration of Eqs. (16) and (18) in the interval

[tn, tn+1] is performed adopting a backward-Euler scheme [28].
The evaluation of the plastic and damage increments in the finite
time step is performed setting:

�εp =
∫ tn+1

tn

ε̇pdt = εp − εp,n

(38)

�D± =
∫ tn+1

tn

Ḋ±dt = D± − D±
n

The discretized form of the evolutionary equations of the plastic
strain (16) and of the damage (18) are:

εp = εp,n + H�ε

D± = D±
n + ε±

c

(1 − α±)(ε − εp)
(1 − (1 − η)H )�ε (39)

where H is defined by formula (17). The solution of the coupled
Eqs. (39) is performed by means of a return-mapping algorithm,
i.e. a predictor-corrector procedure [28]. The trial elastic predic-
tor phase is evaluated keeping frozen the plastic strain and the
damage obtained at time tn:

εtr
p = εp,n

βtr = βn

D±,tr = D±
n

σtr = (1 − D±,tr)E
(
ε − εtr

p

)

ϑtr = −Kβtr

f p,tr = − σtr

(1 − D−,tr)
+ ϑ − σy = E

(
ε − εtr

p

) − Kβtr − σy

f ±,tr = E

2

[(
ε − εtr

p

)2 − (ε±
c )2

(1 + α± D±,tr − D±,tr)2

]
(40)

Depending on the values of f p,tr and f ±,tr, four different cases
can occur.

Case 1 f p,tr < 0 f ±,tr < 0

The damage and yield functions are satisfied so there is neither
plastic nor damage evolution. The elastic trial state is the solution
of the damage plastic problem at this step.

Case 2 f p,tr < 0 f ±,tr ≥ 0

The damage limit function is not satisfied. In this case, only
damage evolution arises; in traction, there is never plastic evolu-
tion; while in compression, it can be noted that the plastic yield
function does not depend on the value of D±; thus, an increment
of the variable D±, does not change the value of the plastic yield
function, i.e., f p = f p,tr < 0, so no plastic evolution occurs.
Finally, the solution of Case 2 is computed solving Eq. (39)2

considering εp = εp,n , D± ≥ D±
n and 0 ≤ D± ≤ 1. It results:

εp = εp,n

β = βn (41)

D± = D±
n + ε±

c

(1 − α±)(ε − εp)
(1 − (1 − η)H )�ε

Case 3 f p,tr ≥ 0 f ±,tr < 0

This case can occur only in compression. The plastic evolu-
tion is evaluated solving Eq. (39)1 with D± = D±

n . Once εp is
computed, the trial damage limit function f −,tr is evaluated. If
f −,tr < 0, then, only plastic evolution occurs and the solution
is:

D± = D±
n

εp = εp,n + H�ε
(42)

β = βn − (1 − D−)H�ε

On the contrary, if f −,tr ≥ 0, also a damage evolution occurs and
the evaluation of the plastic and damage increments is performed
solving Case 4.

Case 4 f p,tr ≥ 0 f −,tr ≥ 0

Also this case can occur only in compression. The plastic strain
and damage evolutions are evaluated solving the coupled nonlin-
ear evolutive Eq. (39) under the constrains εp ≤ εp,n , D± ≥ D±

n
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and 0 ≤ D± ≤ 1. To this end, the Newton-Raphson algorithm
is adopted. Equations (39) are rewritten in residual form:

rp = εp − εp,n − H�ε

rD = D− − D−
n − ε±

c

(1 − α±)(ε − εp)
(1 − H )�ε (43)

whose linearization gives:

{
rp

(
ε

j+1
p , D−, j+1

)
rD

(
ε

j+1
p , D−, j+1

)
}

=
{

rD
(
ε

j
p, D−, j

)
rD

(
ε

j
p, D−, j

)
}

+ Z j
t

{
δεp

δD−

}
= 0

(44)

where δεp = ε
j+1
p −ε

j
p, δD− = D−, j+1−D−, j , the superscripts

j and j+1 indicate the iteration indices and the tangent matrix
Z j

t is:

Z j
t =




∂rp

∂εp

∂rp

∂D−

∂rD

∂εp

∂rD

∂D−




∣∣∣∣∣∣∣∣∣
j

(45)

with

∂rp

∂εp

∣∣∣∣
j

= 1

∂rp

∂D−

∣∣∣∣
j

= E K�ε

(E + K (1 − D−, j ))2
(46)

∂rD

∂εp

∣∣∣∣
j

= K (1 − D−, j )ε−
c �ε

(1 − α−)
(
ε − ε

j
p
)3

(E + K (1 − D−, j )))2

∂rD

∂D−

∣∣∣∣
j

= 1 + E Kε−
c �ε

(1 − α−)
(
ε − ε

j
p
)2

(E + K (1 − D−, j ))2

The damage δD− and plastic δεp increments are evaluated solv-
ing the system of Eq. (44). Then, the iterative procedure goes
on until a convergence test is satisfied, i.e. when the values of
the norm of the residual vector is less than a prefixed tolerance.
When D− > D+ it is set D+ = D−.

5. NUMERICAL APPLICATIONS
Applications are developed to investigate the behavior of re-

inforced and unreinforced concrete and masonry rectangular
cross-sections.

Initially, a masonry element reinforced by FRP sheets is an-
alyzed. The axial and bending behavior is studied. Moreover,
comparisons between the numerical and the analytical solutions
are made in order to assess the efficiency of the procedure.

Then, the bending response of a concrete element, reinforced
by FRP sheets is studied. Analyses are developed considering

different constitutive laws for the concrete material, based on
the prescriptions of the Eurocode 2 [29].

A regularized technique based on the fracture energy is
adopted to derive the softening parameters for both the masonry
and concrete numerical applications, considering the fracture
energy equal to the damage dissipation in a volume of beam
defined by the distance between two fractures.

5.1. Reinforced Masonry Element
The analyses are developed to study the mechanical response

of a reinforced masonry element, characterized by the following
material and geometrical data:

E = 5000 MPa σy = 3MPa K = 500 MPa

ε+
c = 0.0001 ε−

c = −0.00067

ε+
u = 0.0004 ε−

u = −0.00085

E R = 200000 MPa

b = 130 mm h = 250 mm

nR = 2 S1 = 10 mm2 S2 = 10 mm2

h1 = 125 mm h2 = −125 mm

(47)

where b is the width of the cross-section.
Note that the material and geometrical data correspond to

a possible masonry obtained using blocks with a rectangular
cross-section of 130 × 250 mm2, reinforced by low modulus
carbon-epoxy composite material at the top and at the bottom of
the cross-section.

Initially, the problem concerning the beam subjected to a
tensile axial force Next and to a bending moment Mext , charac-
terized by a prescribed eccentricity d = Mext/Next = 25 mm,
is investigated. For the considered problem, the whole cross-
section is in tension, thus only damage and no plasticity can
occur; as a consequence, the analytical solution is determined
by formulas reported in the appendix.

In Figures 1 and 2, the comparison between the analytical and
the numerical solutions is shown. In particular, in Figure 1 the
axial force versus the elongation is reported; while in Figure 2
the bending moment is plotted versus the curvature. It can be em-
phasized that the numerical procedure is able to compute a very
satisfactory solution in terms of axial deformation as well as of
curvature. In fact, the numerical solution is able to predict also
sharp snap-back branches. These results point out that the choice
of the control parameters in the arc-length method is appropri-
ate. In Figures 1 and 2, the distributions of tensile stress along
the masonry cross-section during the whole loading history are
also schematically reported. It can be noted that the mechan-
ical response of the reinforced section both in terms of axial
force-elongation, reported in Figure 1, and bending moment-
curvature, reported in Figure 2, is characterized by five different
branches:

1. a linear elastic behavior when the whole section still behaves
elastically,
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FIG. 1. Tensile axial force versus elongation: comparison between analytical and numerical solutions for d = 25 mm.

FIG. 2. Bending moment versus curvature: comparisons between analytical and numerical solutions for d = 25 mm.
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FIG. 3. Tensile axial force versus elongation for different values of the eccentricity d.

2. a softening branch after the peak that corresponds to the dam-
age evolution in the upper part of the masonry section,

3. a hardening branch when the upper part of the section is
completely damaged, the middle part is partially damaged
and the lower one still behaves elastically,

4. a severe snap-back when the greater part of the masonry
section is completely damaged and a smaller part is partially
damaged,

5. a linear elastic branch that occurs when the whole masonry
section is completely damaged and only the reinforcements
are active.

FIG. 4. Bending moment versus curvature for different values of the eccentricity d.

Then, the beam, subjected to axial force and bending mo-
ment characterized by different values of the eccentricity d, is
considered. In Figures 3 and 4, the tensile axial force versus
the elongation and the bending moment versus the curvature are
plotted, respectively. It can be noted that the response both in
terms of axial force-elongation and bending moment-curvature
is characterized by softening branches and severe snap-backs
that correspond to the damage evolution in the masonry sec-
tion. The mechanical response for any value of the eccentricity
d tends to the linear elastic behavior of the reinforcements when
the cohesive material is completely damaged. As it can be seen
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FIG. 5. Compressive axial force versus elongation for different values of the eccentricity d.

in Figure 3 and Figure 4, the mechanical response is character-
ized by severe snap-backs for small values of d, i.e., for high
values of the maximum tensile axial force and small values of
the maximum bending moment. The softening behavior is more
regular without snap-backs for high values of d , i.e., for reduced
values of the maximum tensile axial force and high values of
the maximum bending moment, since in these cases the damage
evolution occurs more gradually.

Moreover, in Figures 5 and 6, the compressive axial force
versus the axial strain and the bending moment versus the cur-
vature are plotted, respectively. In these cases, the response

FIG. 6. Bending moment versus curvature for different values of the eccentricity d.

of the reinforced beam appears more complex as it is signif-
icantly influenced not only by the damage evolution but also
by the plastic flow even for reduced values of the eccentric-
ity d. The response of the beam for any loading history is
characterized by steep softening branches and by severe snap-
backs. As it can be seen in Figure 5, for high values of d
in the first part of the loading history a positive elongation
occurs although the section is subjected to compressive axial
force.

Finally, it can be pointed out that, also in these cases, the
mechanical response tends to the linear elastic behavior of the
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FIG. 7. Bending moment versus curvature for different values of the tensile axial force.

reinforcements for any value of d , when the masonry is com-
pletely damaged.

In Figures 7 and 8, the bending moment is plotted versus
the curvature for different values of the tensile and compressive
axial force, respectively. The considered loading histories con-
sist in two steps: initially, the axial force is applied, such that
Next does not induce damage and plastic deformations in any
part of the cross-section; then the bending moment is applied
taking constant the axial force. From Figure 8, it is clear that the
initial compression improves the structure response and bearing
capabilities.

FIG. 8. Bending moment versus curvature for different values of the compressive axial force.

5.2. FRP Reinforced Concrete Element
A concrete element reinforced by FRP material is analyzed. In

particular, it is studied a rectangular cross-section characterized
by the following geometrical data:

b = 300 mm h = 600 mm

nR = 2 S1 = 125 mm2 S2 = 62 mm2

h1 = 300 mm h2 = −300 mm

(48)

The amount of FRP considered in the cross-section of the
concrete beam corresponds to 3 layers with a width of 250 mm
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FIG. 9. Uniaxial stress-strain response for the EC2 model and for the proposed Model 1 and Model 2.

on the bottom and to 2 layers with a width of 180 mm on the
top. A high modulus graphite FRP reinforcement, characterized
by a Young modulus E R = 760000 MPa, is considered for the
analysis of concrete section. The FRP is modeled as a linear
elastic material.

Three different concrete behaviors, schematically repre-
sented in Figure 9 are considered.

EC2 model considers a concrete response strictly following
the Eurocode 2 [29] prescriptions. Hence, an elastoplastic be-
havior, with no hardening, is adopted in compression until the
uniaxial deformation ε reaches the limit value ε f = −0.0035;
moreover no strength in tension is assumed. The stress-strain
relationship for EC2 model is schematically reported in Figure
9. The EC2 concrete response is recovered within the proposed
elastoplastic-damage model setting the parameters as:

• compression

E = 19050 MPa σy = 13.226 MPa K = 0 MPa

ε−
c → ∞ ε−

u → ∞ (49)

• tension

E = 19050 MPa

ε+
c → 0 ε+

u → 0
(50)

where the symbols → 0 and → ∞ indicate the assumption of
very small and very high numerical values, respectively.

Note that the Young modulus E and the yield stress σy are
determined following the prescriptions of the Eurocode 2.

Model 1 considers the same concrete response of EC2 model
in compression, setting the model parameters as in (49); a fi-
nite strength, evaluated according to the Eurocode 2 [29] and a
linear softening response are introduced in tension. In Figure 9
the stress-strain behavior, considered for Model 1, is reported.
Model 1 concrete tensile response is obtained within the pro-
posed model setting the parameters as:

E = 19050 MPa

ε+
c = 0.000136 ε+

u = 0.00136
(51)

Model 2 considers the damage response of Model 1 in tension,
setting the model parameters as in (51); an elastoplastic-damage
response is assumed in compression in order to better approx-
imate the experimental behavior of concrete, as illustrated in
Figure 9. Model 2 compressive response is recovered within the
proposed model, setting the parameters as:

E = 19050 MPa σy = 13.226 MPa K = 870 MPa

ε−
c = −0.00072 ε−

u = −0.00082
(52)

The bending behavior of the reinforced concrete section is
analyzed.

In Figure 10, the bending moment versus the curvature is
plotted for the three different proposed concrete responses. It can
be noted that there are significative differences, in the first part of
the analyses, between the response obtained in EC2 model and
in Model 1 and 2. In fact, the latter two stress-strain relationships
are characterized by finite tensile strength, while a no tension
material is assumed in EC2 model. In the second part of the
analyses, when the material considered in Model 1 and 2 is
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FIG. 10. Bending behavior of the reinforced concrete section obtained considering EC2 mode and the proposed Model 1 and Model 2.

completely damaged in tension, the behavior computed with the
three stress-strain laws present only light differences.

In EC2 model and Model 1 the analyses are interrupted when
the axial deformation reaches the limit value ε f in a point of the
section, since the compressive concrete behavior is not defined
after that point for EC2 model and Model 1, as shown in Figure 9.

In Model 2 plastic and damage evolutions in compression
are defined also after the limit deformation ε f . In fact, the soft-
ening branch of the response is due to the damage and plastic
evolutions.

When the concrete material is completely damaged, only the
FRP reinforcements are able to bear bending loading increments;
thus, the response becomes linear with a slope corresponding to
the bending stiffness of the reinforcements.

6. CONCLUSIONS
The proposed one-dimensional model is thermodynamically

consistent and it accounts for the damage in tension and for the
plasticity and damage in compression. In particular, the plastic
evolution is governed by the elastic strain as the experimental
evidences show.

The model appears simple and effective. In fact, it is de-
fined by a reduced number of parameters with a clear physical
meaning. Moreover, it is able to reproduce different types of
mechanical behaviors of the cementitiuous materials properly
setting the parameters. In particular, the Eurocode 2 [29] con-
crete constitutive laws can be reproduced within the proposed
model.

The developed numerical procedure, based on the arc-length
method, is able to determine the complex behavior of the rein-
forced cementitiuous elements. The proper choice of the control
parameters allows it to follow the load-displacement equilibrium
curve, which presents softening and sharp snap-back branches.

The presented one-dimensional model and numerical pro-
cedure allow us to derive simple but fundamental considera-
tions on the mechanical response of cementitious elements re-
inforced by advanced composite materials. In fact, the damage
and plastic effects, taken into account in the material constitu-
tive law, significantly influence the cross-section beam behavior.
As matter of fact, the results obtained by the presented model
could be strongly different from the ones determined adopt-
ing more classical and simple constitutive laws, as the elasto-
plastic or the elastic no tension models. These results can give
useful information for a more profitable structural design. In
particular, collapse loads and resistance domains of the cross-
section in terms of axial force and bending moment can be
derived.

Furthermore, the procedure is able to evaluate the behavior
of damaged structures before and after the application of rein-
forcements.

Future developments will deal with the implementation of
the elastoplastic-damage model in a finite element code, in the
framework of the fiber models, able to overcome the localization
problems due to the material softening response.
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APPENDIX: ANALYTICAL SOLUTION
An analytical expression for the stress-strain relation (εo, χ)−

(N , M) is obtained. The discussion is herein restricted to the
case of rectangular cross-sections with base b and height h; the
extension to other cross-section geometries can be performed.
Two elastic reinforcements are placed one at the bottom and
the other at the top of the cross-section, characterized by ar-
eas S1 = S and S2 = S and by abscissas h1 = h/2 and
h2 = −h/2.

The value of the eccentricity d = Mext/Next is set in or-
der to get the whole section subjected only to tensile stress.
Hence, only damage and no plasticity can occur in the cohesive
beam.

The stress in the cementitious cross-section is given by:

σe = Eε when ε ≤ ε+
c

σd = Eε+
c

(ε+
u − ε)

(ε+
u − ε+

c )
when ε+

c < ε ≤ ε+
u

σu = 0 when ε+
u < ε

(53)

where the deformation ε is obtained by formula (21).
Five different cases can occur, depending on the stress

distribution in the cross-section, as represented in Figures 1
and 2:

1. the whole section behaves elastically,
2. a part of the section is still elastic and the other part is partially

damaged,
3. a part of the section behaves elastically, a part is partially

damaged and the rest is completely damaged,
4. a part of the section is partially damaged while the other part

is completely damaged,
5. the whole section is completely damage only the elastic re-

inforcement is able to carry the load increment.
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The two abscissas yc and yu where the initial and the final
damage strain thresholds occur, respectively, are defined as:

yc = ε+
c − e

χ
yu = ε+

u − e

χ
(54)

The tensile axial force N B and the bending moment M B in the
cohesive beam for the five cases result:

N B
1 =

∫ h/2

−h/2
σedy M B

1 =
∫ h/2

−h/2
yσedy

N B
2 =

∫ yc

−h/2
σedy +

∫ h/2

yc

σddy M B
2 =

∫ yc

−h/2
yσedy

+
∫ h/2

yc

yσddy

N B
3 =

∫ yc

−h/2
σedy +

∫ yc

yu

σddy M B
3 =

∫ yc

−h/2
yσedy

+
∫ yu

yc

yσddy

N B
4 =

∫ yu

h/2
σddy M B

4 =
∫ yu

−h/2
yσdy

N B
5 = 0 M B

5 = 0 (55)

The axial force N R and the bending moment M R in the elastic
reinforcements are:

N R = SER

[
ε

(
h

2

)
+ ε

(
−h

2

)]
= 2 SERe

M R = h

2
SER

[
ε

(
h

2

)
− ε

(
−h

2

)]
= h2

2
SERχ

(56)

For the i-th case, with i = 1, . . . , 5, the total axial force and
bending moment acting in the cross-section result:

N tot
i = N B

i + N R (57)

Mtot
i = M B

i + M R (58)

During the loading history, it is set:

Mtot
i = N tot

i d (59)

From Eq. (59) the relations χ(e) or e(χ) are obtained. Substi-
tuting χ(e) in the Eq. (57), the relationship N tot

i − e is deter-
mined for all the five different cases. Then, substituting e(χ) in
Eq. (58), the relation Mtot

i −χ is obtained for all the five different
cases.




