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 Abstract

The reinforcing elements of multi-layer elastomeric isolation bearings, which are normally steel
plates, are replaced by a fiber reinforcement. The fiber-reinforced isolator is significantly lighter and
could lead to a much less labor-intensive manufacturing process. In contrast to the steel reinforcement,
which is assumed to be rigid, the fiber reinforcement is flexible in extension. This paper presents theoret-
ical approach for analyzing the compressive stiffness and bending stiffness of fiber-reinforced isolators.
The elastomer is assumed to be incompressible and pressure-dominant. Assuming that each elastomeric
layer in the bearing deforms in such a way that the horizontal planes remain planar and points on a verti-
cal line lie on parabola after loading, the closed-form solutions are derived for the compression and bend-
ing stiffnesses of fiber-reinforced isolators having three types of geometry: infinitely long strip,
rectangular and circular. The influence of fiber flexibility on the stiffness of isolators is studied.

 Introduction

The bearings used in seismic isolation are heavy and expensive. The primary weight in an isolator
is due to the reinforcing steel plates, which are used to provide vertical stiffness to the rubber-steel com-
posite element. The high cost of producing the isolators results from the labor involved in preparing the
steel plates and assembly of the rubber sheets and steel plates for vulcanization bonding in a mold. The
research work recently performed by Kelly (1999) suggests that both the weight and the cost of isolators
can be significantly reduced by eliminating the steel reinforcing plates and replacing them with a fiber
reinforcement. The reduction in weight is possible because fiber materials are now available with an elas-
tic stiffness that is of the same order as steel. The reinforcement needed to provide the vertical stiffness
may be obtained by using a similar volume of a very much lighter material. Manufacturing cost may be
reduced if the use of fiber allows a simpler, less labor-intensive process.

To calculate the stiffness of a steel-reinforced bearing, an approximate analysis is used that
assumes that each individual layer of elastomer in the bearing deforms in such a way that horizontal
planes remain planar and points on a vertical line lie on a parabola after loading. The steel plates are
assumed to be rigid to constrain the displacement at the top and bottom of the elastomer. The elastomer is
assumed to be strictly incompressible and its normal stress components are approximated by the pressure.
This leads to the well-known ‘pressure solution’ approach (Kelly 1997). This paper will show that the
extensional flexibility of the fiber reinforcement can be incorporated into the ‘pressure solution’
approach, and that prediction of the resulting stiffness can be made.

 Governing Equation of Pressure

A single elastomeric layer with fiber reinforcements in an isolator is shown in Figure 1 where a
coordinate system  is established by locating the origin at the center of the elastomeric layer andx y z, ,( )
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the -  plane in the middle plane of the layer. The elastomeric layer has a thickness of . Its top and bot-
tom surfaces are perfectly bonded to fiber reinforcements which are modeled as an equivalent sheet of
thickness . Let ,  and  denote the displacements of the elastomer in the ,  and  coordinate

directions, respectively;  and  denote the displacements of the reinforcement in the  and  direc-

tions, respectively. Under the compression load  in the  direction, the displacements of the elastomer
are assumed to have the form

  (1)

(2)

(3)

In Eqs. (1) and (2), the terms of  and  represent the kinematic assumption of quadratically varied

displacements and are supplemented by additional displacements  and , respectively, which are con-

stant through the thickness and are intended to accommodate the stretch of the reinforcement. Eq. (3) rep-
resents the assumption that horizontal planes remain planar.

The elastomer is assumed to have linearly elastic behavior with incompressibility. The assump-
tion of incompressibility produces a constraint on displacements in the form

(4)

Substituting Eqs. (1) to (3) into the above equation and then taking integration through the thickness from
 to  lead to

(5)

 in which  is the nominal compression strain.

Figure 1. Elastomeric layer with fiber reinforcements
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The stress state in the elastomer is assumed to be dominated by the internal pressure , such that
the stress components of the elastomer are (Kelly 1997)

(6)

The equilibrium equations in the  and  directions for the stresses of the elastomer are then reduced to 

(7)

(8)

Under the displacement assumptions in Eqs. (1) to (3), the shear stress components of the elastomer are

(9)

with  being the shear modulus of the elastomer, and the equilibrium equations become

(10)

(11)

Differentiating Eqs. (10) and (11) with respect to  and , respectively, and then adding them up yield

(12)

The internal forces acting in the reinforcing sheet are related to the shear stresses,  and ,

acting on the surfaces of the reinforcing sheet bonded to the top and bottom layers of elastomer through
two equilibrium equations in the  and  directions

(13)

(14)

where  and  are the normal forces per unit length in the  and  directions, respectively;  is

the in-plane shear force per unit length. Substituting Eq. (9) into the above equations, and then combining
these with the equilibrium equations of the elastomeric layer in Eqs. (10) and (11) to eliminate  and 

give
(15)

(16)

Bringing the strain-stress relation of the reinforcement into Eqs. (15) and (16) leads to

(17)

(18)

where  and  are the elastic modulus and Poisson’s ratio of the reinforcement. Differentiating Eqs.

(17) and (18) with respect to  and , respectively, and then adding them up yield
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(19)

Combining Eq. (5) with Eq. (12) to eliminate the terms of  and  gives

(20)

Substitution of this into Eq. (19) leads to

(21)

in which  is defined as

(22)

The pressure  can be solved by satisfying the boundary conditions that the pressure in the elastomer and
the normal force in the reinforcement vanish at the edges of the pad.

 Effective Compressive Modulus

The compression stiffness of a bearing is determined by the effective compressive modulus 

defined as

(23)

where  is the area of the pad in the -  plane and the resultant compression load  has the form

(24)

For infinitely long strip pads, the deformation is in a plane strain state, so that displacement com-
ponent in the  direction vanishes and the governing equation of the pressure becomes a ordinary differ-

ential equation of . If the strip pad has a width of , the effective compressive modulus has the form

(25)

in which  is the shape factor of the infinitely long strip pad.
For rectangular pads, the pressure can be solved by using the approximate boundary conditions

(Tsai and Kelly 2001). If the aspect of the rectangular pad is  by , the effective compressive modu-
lus has the form

(26)

in which  is the shape factor of the rectangular pad, and
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The effective compressive modulus in Eq. (26) varies almost linearly with the aspect ratio , so that a
simplified formula is established (Tsai and Kelly 2001)

(28)

with . Because the range of the  values used in the regression analysis is between 0 and 5, the

effective compressive modulus in Eq. (28) is only applicable to the range of . The maximum
error in this range is smaller than 4 percent.

For circular pads under compression, the deformation is in an axisymmetric state. The governing
equation of the pressure can be expressed by the cylindrical coordinate system . If the circular pad

has a radius of , the effective compressive modulus has the form

(29)

in which  is the modified Bessel function of the first kind of order  and  is the shape fac-

tor of the circular pad.

The ratio  is plotted in Figure 2 as a function of  for the infinite long strip pad, the

rectangular pads with  and , and the circular pad of . The figure shows

that the effective compressive modulus decreases with increasing . To have high effective compres-

sive modulus, we must keep the value of  as low as possible. 

Figure 2. Variation of effective compressive modulus with 
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 Effective Bending Modulus

When the pad in Figure 1. is subjected to a pure bending moment  in the  direction, the rein-

forcements bonded to the top and bottom of the elastomeric layer rotate about the  axes. Assuming the

reinforcements remain planar, the rotation forms an angle  between the reinforcing sheets and is sym-

metric to the -  plane. Following the same kinematic assumptions used for the compression stiffness,

the displacement components of the elastomer in the  and  directions has the same forms as Eqs. (1)

and (2), respectively. The displacement in the  direction is given by

(30)

in which  is the radius of the bending curvature. Following the similar procedure described in
Section 2, the pressure governing equation for the bending stiffness can be derived and have the same
form as Eq. (21).

The bending stiffness of the bearing is determined by the effective bending modulus  defined

as

(31)

where  is the moment of inertia of the pad about the  axis. The bending moment  is expressed as

(32)

For the infinitely long strip pad of width , the moment of inertia is , and the effec-
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(33)
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 in which  and  have been defined in Eq. (27) and
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Utilizing the regression analysis, a simplified formula for the effective bending modulus of rectangular
pads is established (Tsai and Kelly 2001)
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(36)

with . The errors of this simplified formula with respect to the exact formula in Eq. (34) is

smaller than  percent. Because the range of the  values used in the regression analysis is between 0

and 5, the effective bending modulus in Eq. (36) is only applicable to the range of .

For the circular pad of radius , the moment of inertia about the  axis is . The effec-

tive bending modulus of circular pads is solved as (Tsai and Kelly 2001)

(37)

The ratio  is plotted in Figure 3 as a function of  for the infinite long strip pad, the

rectangular pads with  and , and the circular pad of . The figure shows

that the effective bending modulus decreases with increasing , but the variation is less severe than the
effective compression modulus in Figure 2.

  Conclusion

Theoretical analyses on different shapes of elastomeric layer bonded to flexible reinforcements
and subjected to compression loading and pure bending loading are presented. Theoretical solutions show
that the compression stiffness and the bending stiffness of the fiber-reinforced isolator are affected by the
shape factor of the elastomer and the flexibility of the reinforcement. Similar to steel-reinforced isolators,

Figure 3. Variation of effective bending modulus with 
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the stiffness of fiber-reinforced isolators increases with increasing the shape factor, but the flexibility of
the reinforcement can decrease the stiffness of the isolator.
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